Product datasheet

Specifications

Main

Range of product	Zelio Logic
Product or component type	Compact smart relay

Complementary

Local display	Without
Number or control scheme lines	240 with ladder programming
Cycle time	$6 . . .90 \mathrm{~ms}$
Backup time	10 years at $25^{\circ} \mathrm{C}$
Clock drift	$12 \mathrm{~min} / \mathrm{year}$ at $0 . . .55^{\circ} \mathrm{C}$ $6 \mathrm{~s} /$ month at $25^{\circ} \mathrm{C}$
Checks	Program memory on each power up
[Us] rated supply voltage	100... 240 V AC
Supply voltage limits	$85 . .264 \mathrm{~V}$
Supply frequency	$50 / 60 \mathrm{~Hz}$
Maximum supply current	100 mA at 100 V (without extension) 50 mA at 240 V (without extension)
Power consumption in VA	11 VA without extension
Isolation voltage	1780 V
Protection type	Against inversion of terminals (control instructions not executed)
Discrete input number	12
Discrete input voltage	100... 240 V AC
Discrete input current	0.6 mA
Discrete input frequency	$\begin{aligned} & 57 \ldots 63 \mathrm{~Hz} \\ & 47 \ldots 53 \mathrm{~Hz} \end{aligned}$
Voltage state 1 guaranteed	>= 79 V for discrete input
Voltage state 0 guaranteed	< $=40 \mathrm{~V}$ for discrete input
Current state 1 guaranteed	>= 0.17 mA (discrete input)
Current state 0 guaranteed	< $=0.5 \mathrm{~mA}$ (discrete input)
Analogue input number	0
Input impedance	350 kOhm for discrete input
Number of outputs	8 relay

Output voltage limits	5... 30 V DC (relay output) 24... 250 V AC
Contacts type and composition	NO for relay output
Output thermal current	8 A for all 8 outputs for relay output
Electrical durability	AC-12: 500000 cycles at $230 \mathrm{~V}, 1.5 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1 AC-15: 500000 cycles at $230 \mathrm{~V}, 0.9 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1 DC-12: 500000 cycles at $24 \mathrm{~V}, 1.5 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1 DC-13: 500000 cycles at $24 \mathrm{~V}, 0.6 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1
Switching capacity in mA	>= 10 mA at 12 V (relay output)
Operating rate in Hz	0.1 Hz (at le) for relay output 10 Hz (no load) for relay output
Mechanical durability	10000000 cycles for relay output
[Uimp] rated impulse withstand voltage	4 kV conforming to EN/IEC 60947-1 and EN/IEC 60664-1
Clock	Without
Response time	50 ms with ladder programming (from state 0 to state 1) for discrete input 50 ms with ladder programming (from state 1 to state 0) for discrete input $50 . .255 \mathrm{~ms}$ with FBD programming (from state 0 to state 1) for discrete input $50 . . .255 \mathrm{~ms}$ with FBD programming (from state 1 to state 0) for discrete input 10 ms (from state 0 to state 1) for relay output 5 ms (from state 1 to state 0) for relay output
Connections - terminals	Screw terminals, $1 \times 0.2 . . .1 \times 2.5 \mathrm{~mm}^{2}$ (AWG 25...AWG 14) semi-solid Screw terminals, $1 \times 0.2 \ldots 1 \times 2.5 \mathrm{~mm}^{2}$ (AWG 25...AWG 14) solid Screw terminals, $1 \times 0.25 \ldots 1 \times 2.5 \mathrm{~mm}^{2}$ (AWG $24 \ldots$...AWG 14) flexible with cable end Screw terminals, $2 \times 0.2 \ldots 2 \times 1.5 \mathrm{~mm}^{2}$ (AWG 24...AWG 16) solid Screw terminals, $2 \times 0.25 \ldots 2 \times 0.75 \mathrm{~mm}^{2}$ (AWG $24 \ldots$...AWG 18) flexible with cable end
Tightening torque	0.5 N.m
Overvoltage category	III conforming to EN/IEC 60664-1
Net weight	0.35 kg
Environment	
Immunity to microbreaks	10 ms
Product certifications	UL GOST GL CSA C-Tick
Standards	EN/IEC 61000-4-2 level 3 EN/IEC 61000-4-12 EN/IEC 61000-4-11 EN/IEC 60068-2-6 Fc EN/IEC 61000-4-5 EN/IEC 60068-2-27 Ea EN/IEC 61000-4-6 level 3 EN/IEC 61000-4-3 EN/IEC 61000-4-4 level 3
IP degree of protection	IP20 (terminal block) conforming to IEC 60529 IP40 (front panel) conforming to IEC 60529
Environmental characteristic	EMC directive conforming to EN/IEC 61000-6-2 EMC directive conforming to EN/IEC 61000-6-3 EMC directive conforming to EN/IEC 61000-6-4 EMC directive conforming to EN/IEC 61131-2 zone B Low voltage directive conforming to EN/IEC 61131-2
Disturbance radiated/ conducted	Class B conforming to EN 55022-11 group 1
Pollution degree	2 conforming to EN/IEC 61131-2
Ambient air temperature for operation	$-20 . . .40^{\circ} \mathrm{C}$ in non-ventilated enclosure conforming to IEC 60068-2-1 and IEC 60068-2-2 $-20 \ldots 55^{\circ} \mathrm{C}$ conforming to IEC 60068-2-1 and IEC 60068-2-2
Ambient air temperature for storage	$-40 . .70^{\circ} \mathrm{C}$
Operating altitude	2000 m
Maximum altitude transport	3048 m

Dimensions Drawings

Compact and Modular Smart Relays
Mounting on $35 \mathrm{~mm} / 1.38 \mathrm{in}$. DIN Rail
$\frac{\mathrm{mm}}{\mathrm{in} \text {. }}$

(1) With SR2USB01 or SR2BTC01

Screw Fixing (Retractable Lugs)
mm

(1) With SR2USB01 or SR2BTC01

Position of Display

$\frac{\mathrm{mm}}{\mathrm{in} \text {. }}$

Connection of Smart Relays on AC Supply

SR•••1B, SR••••1FU

(1) 1 A quick-blow fuse or circuit-breaker.
(2) Fuse or circuit-breaker.
(3) Inductive load.
(4) Q9 and QA: 5 A (max. current in terminal C: 10 A).

With Discrete I/O Extension Module
SR3B \cdots B + SR3XT $\cdots B$, SR3B $\cdots F U+$ SR3XT $\cdots F U$

(1) 1 A quick-blow fuse or circuit-breaker.

NOTE: QF and QG: 5 A for SR3XT141••

Performance Curves

Compact and Modular Smart Relays

Electrical Durability of Relay Outputs

(in millions of operating cycles, conforming to IEC/EN 60947-5-1)
AC-12 (1)

X : Current (A)
Y: Millions of operating cycles
(1) AC-12: switching resistive loads and opto-coupler isolated solid-state loads, $\cos \geq 0.9$.

AC-14 (1)

X: Current (A)
Y: Millions of operating cycles
(1) AC-14: switching small electromagnetic loads $\leq 72 \mathrm{VA}$, make: $\cos =0.3$, break: $\cos =0.3$.

AC-15 (1)

X: Current (A)
Y: Millions of operating cycles
(1) AC-15: switching electromagnetic loads $\geq 72 \mathrm{VA}$, make: $\cos =0.7$, break: $\cos =0.4$.

